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Abstract. The problem of an infinitely long annular cylinder whose inner and outer surfaces are subjected to
known surrounding temperatures and are traction-free is considered in the presence of an axial uniform magnetic
field. The problem is in the context of generalized magneto-thermoelasticity theory with one relaxation time. The
Laplace transform with respect to time is used. A numerical method based on a Fourier-series expansion is used
for the inversion process.

Numerical computations for the temperature, displacement and stress distributions as well as for the induced
magnetic and electric fields are carried out and represented graphically.
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1. Introduction

During the second half of the twentieth century, nonisothermal problems in the theory of
elasticity have become increasingly important, This is due mainly to their many applications

in widely diverse fields. The high velocities of modern aircraft give rise to aerodynamic heat-
ing, which produces intense thermal stresses, reducing the strength of the aircraft structure.
In the technology of modern propulsive systems, such as jet and rocket engines, the high
temperatures associated with combustion processes are the origins of severe thermal stresses.
Similar phenomena are encountered in the technologies of space vehicles and missiles, in the
mechanics of large steam turbines, and even in shipbuilding, where, strangely enough, ship
fractures are often attributed to thermal stresses of moderate intensities [1, p. xi].

Biot [2] formulated the theory of coupled thermoelasticity to eliminate the paradox inher-
ent in the classical uncoupled theory that elastic changes have no effect on the temperature.
The heat equations for both theories are of the diffusion type predicting infinite speeds of prop-
agation for heat waves contrary to physical observations. Lord and Shulmann [3] introduced
the theory of generalized thermoelasticity with one relaxation time by postulating a new law
of heat conduction to replace the classical Fourier law. This law contains the heat flux vector
as well as its time derivative. It contains also a new constant that acts as a relaxation time.
The heat equation of this theory is of the wave-type, ensuring finite speeds of propagation
for heat and elastic waves. The remaining governing equations for this theory, namely, the
equations of motion and the constitutive relations remain the same as those for the coupled
and the uncoupled theories. This theory was extended by Dhaliwal and Sherief [4] to general
anisotropic media in the presence of heat sources.

* On leave at Department of Mathematics, University of Qatar, Doha-Qatar.
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Figure 1. A hollow thermoelastic cylinder with a magnetic field in direction of the axis.

Increasing attention is being devoted to the interaction between magnetic fields and strain
in a thermoelastic solid due to its many applications in the fields of geophysics, plasma physics
and related topics. In the nuclear field, the extremely high temperatures and temperature gra-
dients, as well as the magnetic fields originating inside nuclear reactors, influence their design
and operations [1, p. xi]. Usually, in these investigations the heat equation under consideration
is taken as the uncoupled or the coupled equation, not the generalized one. This attitude is
justified in many situations, since the solutions obtained from any of these equations differ
little quantitatively. However, when short-time effects are considered, the full generalized
system of equations has to be used or else a great deal of accuracy is lost [3].

A comprehensive review of the earlier contributions to the subject can be found in [5].
Among the authors who considered the generalized magneto-thermoelastic equations are
Nayfeh and Nemat-Nasser [6] who studied the propagation of plane waves in a solid un-
der the influence of an electro-magnetic field. They obtained the governing equations in the
general case and the solution for some particular cases. Choudhuri [7] extended these results
to rotating media. Lately, Sherief [8] solved a problem for a solid cylinder, while Sherief and
Ezzat [9] solved a thermal shock half-space problem using asymptotic expansions.

In this work, the problem of an infinitely long annular cylinder whose inner and outer
surfaces are subjected to known surrounding temperatures and are traction-free is considered
in the presence of an axial uniform magnetic field in the context of generalized magneto-
thermoelasticity theory with one relaxation time. This problem closely models the situation
inside some nuclear reactors which are made of elastic materials in the form of annular cylin-
ders and are exchanging heat with the inner and outer mediums through the surfaces of these
cylinders.
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2. Formulation of the problem

Let (r, ¥, z) be cylindrical polar coordinates with theaxis coinciding with the axis of an
annular infinitely long elastic circular cylinder of a homogeneous, isotropic material of finite
conductivity whose inner and outer radii By, i = 1, 2 (see Figure 1). The suffix 1 refers to

the inner surface of the cylinder, while the suffix 2 refers to the outer surface. The surfaces of
the cylinder are taken to be traction-free and are in contact with media of known temperatures
F;(r,1),i =1, 2. The medium interacts with the surroundings through the heat-transfer coeffi-
cientsL;,i = 1, 2. A constant magnetic field of strengkly acts in the direction of the-axis.

Due to the effect of this magnetic field there arises in the medium an induced magnetic field
h and an induced electric fiel (both assumed to be small). Also, there arises a fbr{ibe
Lorentz Force). Due to the effect of the force, points of the medium undergo a displacement
which gives rise to a temperature. The electromagnetic quantities satisfy Maxwell’s equations

oD
curlh=J+ —, 1
u + 1)
0B
CUrE = ——, 2
o 2)
divh =0, divE =0, 3
B=puoHo+h), D=sE. 4)

wherel is the electric current density,o andsg are the magnetic and electric permeabilities,
respectively, an®, D are the magnetic and electric induction vectors, respectively.
The elastic quantities satisfy the equations of motion in vector form

92u
a2’ ©

whereo is the stress tensdt, the external body force, which is here equal to the Lorentz force
andp is the density. The last field equation is the equation of energy balance, namely

dve +F=p

%[chT + y Toe] = —divq, (6)
whereq is the heat-flux vector; is the specific heat at constant strairs div u is the cubical
dilatation, y is a material constant equal (8% + 2u1)«,, wherei, u are Lame’s modulii and
o, is the coefficient of linear thermal expansidh.is a reference temperature assumed to be
such that(T — To)/ To| < 1.

The above field equations are supplemented by constitutive equations which consist first
of Ohm’s law for moving media [1, p. 726]

au
J=Go|:E+M0§X(Ho+h)i|,

whereoy is the electric conductivity. We may linearize the above equation by neglecting small
quantities of the second order giving

au
J=O’0|:E+/L0§XHO]. @)
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The second constitutive equation is the one for the Lorentz force which is [1, p. 702]
F=JxB. (8)
The third constitutive equation is the Hooke—Duhamel-Neumann law, namely [3]
0;j = 2ue;; + redj — y (T — Tp)dij, (9

whereg;; is Kronecker’s delta tensor anrg is the strain tensor whose components are given
by
ejj = %(ui,j +uj1) (10)

The last constitutive equation is the generalized Fourier law of heat conduction which has the
form

q-+ TO?J_? = —kgradT. (11)

Substituting from Equation (9) in Equation (5) and using Equation (10), we arrive at the
equations of motion in vector form

2

. d
(A + w)V2u + pgrad divu — y gradT + F = pa—tlzj. (12)
Applying the div operator to both sides of Equation (12), we obtain
2 2 . 826
(A+2u)Ve —yVT +divF = p— (13)

ar2’
whereV? is Laplace’s operator in cylindrical coordinates, given by
v _ 32+1a L 9° +32
o2 rar r?2oy?  0z%
In case of dependence eronly, this reduces to
\vZ - 8_2 }i
or2  ror
Applying the div operator to both sides of Equation (11), then substituting from the resulting
equation in Equation (6) and its time derivative, we obtain the generalized heat equation

2

kV2T = 9 + ‘roa—
ot or?

) (pceT + yToe). (14)

Because of the cylindrical symmetry of the problem, and if there isdependence of the
field variables, all the considered functions will be functions ahdr only. The components
of the displacement vector will be taken of the form

up =u,uy =u;, =0.
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The strain tensor components are thus given by

ou u 0
e = —, ey = —, e, =¢e,=¢.y =ey, =0.
rr 97 vy r 2z rz ryr ¥z

It follows that the cubical dilatation is of the form

_0u u 10@ru)

2,2 15
¢ ar + r r or (15)
From Equation (9) we obtain the components of the stress tensor as
ou
Orr = 2//“8_ + Ae — V(T — To), (163.)
r
Opy = 2/1% + xe — y(T — Tp), (16b)
0, =re —y(T —To), (16C)
0, =0y =0y, =0. (16d)

The induced magnetic fieldwill have one componerit in the z-direction, while the induced
electric fieldE will have one componenk in the yr-direction. From Equation (7), it follows
that the electric current density will have one component only injtitirection, given by

0
J = oo [E — ,bLoHoa—I;] . (17)

The vector Equations (1) and (2), reduce to the following scalar equations

dh IE
— =—|J+e0— |, 18
or [ “03,] (18)
19(rE) dh
- = —po—. 19
r or “Oar (19)

Eliminating J between Equation (17) and (18), we obtain

oh ou oE
— = Hy— — E — . 20
oy oomoHop ” |:oo + &0 o7 ] (20)

Eliminating E between Equations (18) and (19), we obtain

9 92 de
V2 — — = — |h= Ho—. 21
|: Modoat Mo€oat2] Hooo 0%; (21)

The Lorentz force has one componénin the r-direction obtained from Equations (8) and
(17) as

0E ah]‘ 22)

F =—poHo| eo— + —
Ho 0|:oat ar
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Substituting from Equation (22) in Equations (13), we obtain upon using Equation (19)

2 2, 2 2 @_ 2y a_ze 2
(A +2u)V<e VVT+M030Hoat2 MoHOVh—,Oatz- (23)

We shall use the following nondimensional variables

o
r' = cinr, R! = cinR;, u' = gcinu, e = ge, O'i/j = gu—”
T —Ty F, — Ty
1=yt ) = 210, 0= , Fl == ,
1N o 1770 Ty i Ty
L.
g=—1_ L=—0 w=—_4 pF=—2t §f
kTocin kein ooioHo oopgHoca

whereg = p%b_ n=~%c= /% is the speed of propagation of isothermal elastic waves

andL,, L, are the coefficients of heat transfer on the inner and outer surfaces of the cylinder,
respectively. In terms of these nondimensional variables, the governing Equations (18), (19),
(21), (23) and (14) reduce to (dropping the primes for convenience)

oh  du OFE
— = — —|VE+ Vi ]|, 24
or ot [V Y ] (24)
19(rE) _ dh (25)
roor ot
0 92 9
V2L 2l |p= % (26)
ot or? ot
92 92e
Ve — £,V?0 — v <v2 — V2ﬁ> h = PPl (27)
0 92
V29 = (E + roﬁ> 6 +e), (28)

where Yv = n/oouo is @ measure of magnetic viscosity, = ¢;/c wherec is the speed
of light given byc? = 1/gouo, 1 = bg/B? is the thermoelastic coupling constant where
b =yTo/u, B? = (A +2u)/p andey; = uoHZ/pc? is the magnetoelastic coupling constant.
We note that Equation (15) retains its form.

The nondimensional constitutive equations take the form

2
Orr = ﬂze - _u - 81/329, (29&)
r
2 du 2
oyy = B — 28—r — £180, (29b)

0. = (B> — 2)e — £18°0, (29¢)
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Op, = 0y = 0y, = 0. (29d)

The initial conditions of the problem are taken to be homogeneous, while the boundary
conditions are taken as follows:

(1) The transverse components of the ved&aare continuous across the surface of the
cylinder, this gives

E(R;,t) = E/(R;,1), t>0, j=12 (30)

whereE*® and E? are the components of the electric field intensities imthdirection in free
space inside and outside the cylinder, respectively.

(2) The transverse components of the vett@re continuous across the surface of the
cylinder, this gives

h(R;,t) =h'(R;, 1), t>0, j=1,2 (31)

whereh! andh? are the components of the induced magnetic field inztd@ection in free
space inside and outside the cylinder, respectively.
(3) The surfaces of the cylinder are traction-free,

o, (Rj,t)=0, >0, j=12 (32)
(4) The heat-conduction boundary condition

gr(Ry, 1) = L1(F1 —0), (33a)
gr(R2, 1) = L2(0 — F2). (33b)

In order to utilize Equations (30) and (31) above, we must obtain the induced fiéJd< in
the free space surrounding the medium. These quantities satisfy the following nondimensional
equations

oh' OFJ
_:_Vz_v .:1’ 27 34
or ar (34)
19(rE/ oh’
TOUED _ M 12 (35)

r or W’

3. Solution in the Laplace-transform domain

Taking the Laplace transform with parametgidenoted by a bar) of both sides of Equations
(24)—(35), we obtain the following set of equations

h _ i - (v + V2%)E, (36)
or

19(rE _

LOUE) _ i, (37)

r or
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[VZ —vs — V252]h = se, (38)
(V2 —5%)e = £1V20 + e0(V2 — VZ52)h, (39)
V20 = (s + 1052)(0 + &). (40)

The nondimensional constitutive Equations (29) in the Laplace transform domain take the
form

2u _
G, = 2% — 2 — ba, (41a)
r
_ ORI _
O}/n// = ,B e — 2— — b@, (41b)
or
& = (% — 2 — bb, (41c)

The boundary conditions in the Laplace transform domain become

E(R;,s) = E/(R;,s), j=1,2 (42)
h(R;,t) =h'(R;, 1), j=12 (43)
6,=0 j=12 (44)
Gr(R1,5) = L1(F1 — 6). (45a)
G-(Ra, s) = La(6 — F»). (45b)

Equations (34) and (35) take the following form in the Laplace-transform domain

oh’

W e —VZSEj, ] = 1, 2, (46)
19(rE/ _
= (rar ) _ s, j=12 (47)

Eliminating/ andd between Equations (38)—(40), we get the following sixth-order differential
equation satisfied by

(V8 — AV* 4+ BV? — C)e = 0, (48)
where
A=sle1(sto+ 1) +eov+v+s(o+ V24 1) + 1],

B = s?{e1(st0 + D) (v + sV?) + gov(s (10 + V) + 1)
+u(s(to+ 1) + 1) + s(s(to(VZ+ 1) + V) + V2 + 1)},
C = s*sto+ 1)(821)V2 +v+ sVZ).
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It should be noted that the above equations reduce to the usual equations of generalized ther-
moelasticity without electro-magnetic effects in the limitiad/ ande, — 0. Equation (48)
can be factorized as

(V2= k) (V2 = k3)(V? — ke = 0, (49)
wherek?, k5 andk3 are the roots of the characteristic equation
k® — Ak*+ Bk — C = 0.

These roots are given by

ki = 3[A + 2P sin Q],
k3 = 3[A — P sin 0 — v/3P cos Q],
k%= 1[A — P sin Q ++/3P cos 0],
where
P Ja7_ 3B, R 9AB — 2A3% — 27C’ 0= 1simi(R).

2p3

It is worth noting here that all the above quantities including the rbgtbeing functions
of the parameter of the Laplace transform, are complex in general.
The solution of Equation (49) can be written as the sum

[N
Il
ngl
[

Il
N

1

whereg; is the solution of the equation
(V2—kdHe;=0. i=1,23

Thus, the general solution of Equation (49) has the form

3

¢ = (Aio(kir) + BiKo(kir)), (50)
i=1

where A; and B; are parameters depending eronly, i = 1,2, 3 and Iy and Ky are the

modified Bessel functions of order zero of the first and second kinds, respectively.
Eliminating i, e and therp, e between Equations (38—40), we find thaandh satisfy the
same equation asi.e.

(VO — AVA 4+ BV?2— ()6 = (VO — AV 4+ BV2—CO)h =0

6 andh are thus given by

3
0= (Alo(kir) + BjKo(kir)), (51)
i=1



396 Hany H. Sherief and Magdy A. Ezzat
_ 3
h=Y (A]Io(kir) + B Ko(kir)). (52)
i=1

where A, B!, A” and B! are parameters depending eronly. The compatibility between
Equations (50-52) and Equations (38) and (40) gives

1+7, 1
o= AT sAdms) (53)
k& —s(1+ o5) k& — s(1+ o5)
N N
Al = ———— A, B'= —————B,. 54
kP — s — V252 k2 —vs — V32 ©4)
Substituting from Equations (53) and (54) in Equations (51) and (52), we obtain
3
= (Ajlo(kir) + Bi Ko(kir))
0=s(1+ 55
s fos); K2 = s(1+ 109) (55)
3
- A,I kl' B,K ki
h:SZ( olkir) + o(kir)) (56)

. k? —vs — V252
i=1 l

Substituting from Equation (50) in the Laplace transform of Equation (15) and integrating
both sides with respect tg we obtain

3
i=1

In obtaining Equation (57), we have used the following relations of the Bessel functions [10,
p. 142]

| =

|

'(Aill(kir) — BiK1(k;r)). (57)

1

=~

/Zlo(z) dz = z11(2), /zKo(z) dz = —zK1(2).

Substituting from Equations (56) and (57) in Equation (36), and using the relations [10, p. 138]
Iy(z) = 11(2), Ky(2) = —K1(2),

we obtain

F o g2y Aihathn) = Bikytkir)
i=1

ki (k? — vs — V252)

(58)

It should be noted here that the solutions (56) and (58) satisfy Equation (37) identically.
Substituting from Equations (50), (55) and (57) in Equation (41a), we obtain

3

_ 2 gt | 0, Kk
Opr = ;{/3 |:1 klz _S(1+ Tos)] (Allo(klr) + BlKO(klr))

- r_i(AiIl(kir) - BiKl(ki”))}, (59)
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Differentiating both sides of Equation (57) with respect timd using the relations [10, p. 139]

1@ _ Io(z) — = I1(2), 1) —Ko(2) = —K1(2),
dZ z dZ <
we obtain
_ 3
a_l/t _ Z |:At <Io(kir) _ ill(’ﬂ'”)) — B; <K0(kir) + iI{l(lﬁl’)>:| . (60)
or kir far

i=1

Substituting from Equations (50), (55) and (60) in Equation (41b), we obtain

3 2
T o U | RPN LaiChul SN PR S }
O'ww = ;Az {|:/8 2 kl.z—s(l—i-‘l,'os)]IO(klr)—i_kiVIl(klr)

3 2
g2 4o 82sA+ 705 s
+;Bl {|:,3 +2 kl.z—s(l—i-ros)]KO(klr)—i_kirKl(klr)} (61)

In order to obtain the induced field in free space, we elimi&t®etween Equations (46) and
(47), to obtain
(VZ—VZAHhi =0, j=12, (62)

whereh® and h? are the solutions of Equation (62) which are bounded at the origin and at
infinity, respectively. Thus, we have

It = Aglo(Vsr), (63)
h? = BoKo(Vsr), (64)

whereAp and By are some parameters dependings @amly.
Substituting from Equations (63) and (64) in Equation (46), we obtain

} A
El= —7011(Vsr), (65)
B

E? = VOKl(Vsr). (66)

We shall now use the boundary conditions of the problem to evaluate the unknown parameters
of the problem, namely; and B;,i = 0, 1, 2, 3. Equations (30) and (31) in the Laplace-
transform domain together with Equations (56), (58), (63), (64), (65) and (66) immediately
give

3

5 (AiI1(kiR1) — BiK1(kiR1)) Ao
— 205 (VsRy) =0, 67
2 ki (k2 — vs — V2s52) y Vsky 7

i=1

) i (Aili(kiR;) — B;K1(kiR2)) B

i=1 ki(kZ — vs — V2s2) Vv 1(VsRp) (68)
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3

(Ailo(ki R1) + B;Ko(k; R1))
’ ; klz — Vs — stz - AOIO(VSRl) = 0, (69)
3
A;Io(ki R2) + BiKo(k; R
s Z (Ailo(kiR2) + BiKo(kiR2)) BoKo(VsRy) = 0. (70)

2 _ ¢ VV2¢2
= kf —vs — Ves

Equations (32) and (59) give

3
1+
Z{ﬂz [1 - %] (Ailo(ki Ry) + B; Ko(ki R1))
i=1 i

2
- W(Aill(ki R1) — B; Kl(kiRl))} =0, (71)
1k;

3
2[4 e15(1+ to08) ' ‘ ‘ '
Z{ﬂ [1 P st ) +Tos)](A,Ioaclz'ez)+Bll<o(k,1'ez))

2
- W(Aill(ki R») — B; Kl(kiRZ))} =0, (72)
ok;

In order to use the boundary conditions (33), we shall use the generalized Fourier law of heat
conduction (Equation (11)) in nondimensional form, namely

a0
-+ T =——.
4r T 0% or

Taking the Laplace transform of the above equation, we obtain

1 99 73)
A R P
Using Equation (73), we may write Equations (33) as

30 _ _

3 L1(1+ 195)0 = —L1(1+ 105)F1, atr = Ry, (74)
r

36 _ _

3_ 4+ Lo(1+ 195)0 = L1(1+ t9s)F>, atr = Ry, (75)
r

Using Equations (74) and (75) together with Equation (55), we obtain

° . AilkiIy(ki Ry) — Ly(1+ to5)Io(k; R1)]
>

i=1 (76)
—B;[ki K1(ki R1) + L1(1 + 7os) Ko(k; R1)] =
5 = —L1F,
k& —s(1+ to5)
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> AilkiIi(ki R2) + Li(1+ 1o5) Io(k; R2)]
>

= (77)
—B;[ki K1(k; R2) — L1(1+ 105)Ko(k; R2)] -
> = LaF>,
ke —s(1+ to08)

Equations (67-72), (76) and (77) constitute a system of eight linear equations in the eight
unknown parameterd;, B;,i = 0,1, 2, 3. Whose solution completes the solution of the
problem in the Laplace transform domain. During the numerical inversion of the Laplace
transform, these equations are solved numerically.

4. Inversion of the Laplace transfrom

We shall now outline the numerical inversion method used to find the solution in the physical
domain. This numerical technique has the advantage that it is easy to implement (relatively
speaking), gives good results, and converges quickly.fitets) be the Laplace transform of
a function f (r, t). The inversion formula for Laplace transforms can be written as

1 d+ioco B
frt) = 5 e’ f(r,s)ds

2mi d—ioco

whered is an arbitrary real number greater than all the real parts of the singularitj&s,af.
Takings = d + iy, we see that the above integral takes the form

dr 00
f@rn) = e—/ e f(r,d + iy)dy.

27 J_oo

Expanding the functio(r, t) = exp(—dt) f(r, t) in a Fourier series in the intervid, 277,
we obtain the approximate formula [11]

fr 1) = foo(r,1) + Ep,

where
foolr,t) = %co(r, )+ ch(r, t) for 0<r <27, (78)
k=1
and
edt ) B
cr(r, 1) = - Re[e™™/T f(r,d +ikn/T)], k=0,1,2, (79)

where Ep, the discretization error, can be made arbitrarily smadl i§ taken large enough
[21].

Since the infinite series in Equation (78) can only be summed up to a finite number of
terms, the approximate value @fr, r) becomes

N
Ity =Jeor )+ Y c(rt) for 0<t < 2T, (80)
k=1



400 Hany H. Sherief and Magdy A. Ezzat

Using the above formula to evaluaf&r, r), we introduce a truncation errdf; that must be
added to the discretization error to produce the total approximation error.

Two methods are used to reduce the total error. First, the ‘Korrecktur’ method [11] is used
to reduce the discretization error. Next, #halgorithm is used to reduce the truncation error
and hence to accelerate convergence.

The Korrecktur method uses the following formula to evaluate the fundtionr)

fr0) = foolr,t) — €Y foo(r, 2T +1) + E,

where the discretization errgE’),| < |Ep| [11]. Thus, the approximate value ¢f(r, 1)
becomes

fvk(rt) = fu(r, ) —e2% f(r, 2T +1), (81)

whereN' is an integer such that’ < N.
We shall now decribe the-algorithm that is used to accelerate the convergence of the
series in Equation (80). Lé¥ be an odd natural number, and let

Su(r, 1) = ch(r, 1)
k=1

be the sequence of partial sums of (80). We definethequence by
Eo.m = 07 E1.m = Sm
and

Ep+lm = Ep—1m+1 + 1/(8p,m+l - 8p,m)’ p = 17 27 3a e .

It can be shown that [11] the sequence

€11,831,851,..-,¢EN,1
converges tof (r, t) + Ep — co/2 faster than the sequence of partial sums
Sme, m=123,....

The actual procedure used to invert the Laplace transforms consists of using Equation (81)
together with thes-algorithm. The values off and 7T are chosen according to the criteria
outlined in [11].

3
10
1.0 o 3.0 ,u

N 2.0

LT -- e
N 1.0 L
0.6 \\ L7 el Pt -7
: N 0.0 | ———= = S
N /7“ =
] N - s Ve

- N - -1.0
o N -

\ - -2.0

\ / -3.0 1"

0.0 T g T =4.0 A~ T T v T a
1

Figure 2. Temperature distribution. Figure 3. Displacement distribution.
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Table 1. Values of the constants

k =386 a; =17810"° ¢y =3831 n = 888673
w= 3861010 1= 7761010 o = 8954 c1 = 4-158(10)3
B2 =4 po = 47 (107 c0=(107%/(36r)  og=57(10)
V = 13910 > To = 293 b= 0042 g= 161

e1 = 00168 ep = 00008 v = 0-008 9= 002
Ri1=1 Ry=2 Li=Ly=2 Hyp=1

-0.02
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Figure 4. Radial stress distribution.
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Figure 6. Induced magnetic field distribution.

5. Numerical results

Figure 5. Transverse stress distribution.
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Figure 7. Induced elctric field distribution.

The copper material was chosen for purposes of numerical evaluations. The constants of the

problem are shown in Table 1

The normalized temperatures of the inner and outer surroundings were taken, respec-

tively, as

Fi(t) = 1.5+ 0-5 cog13y), bE() =1

The computations were performed for three values of nhondimensional time, namely
006, = 0-12 andr = 0-36. The numerical technique outlined above was used to obtain
the temperature, displacement, radial stress and transverse stress distributions, as well as the

induced magnetic and electric field distributions.

In all figures, solid line represent the function
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whenr = 0-06, the dashed lines represent it whea 0-12, while dotted lines represent the
function wherr = 0-36. The normalized temperature incremeis represented by the graph
in Figure 2. The displacementis shown in Figure 3. The stress componenisando ., are
shown in Figures 4 and 5, respectively while the induced fielasd £ are shown in Figures 6
and 7, respectively.

The phenomenon of finite speeds of propagation is manifested in all these figures. For the
smallest values of time considered we see that the heat effects of the surrounding media are
localized in a region adjacent to the walls. This region expands with the passage of time to fill
the whole cylinder for the largest value of time. This region corresponds to the propagation of
wave fronts from the surfaces of the cylinder. This is not the case when the coupled equation
of heat conduction is used. In [12] a similar problem was treated in the context of the coupled
theory of thermoelasticity. It is seen there that the thermal effects extends to the whole cylinder
immediately.
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