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Abstract. The problem of an infinitely long annular cylinder whose inner and outer surfaces are subjected to
known surrounding temperatures and are traction-free is considered in the presence of an axial uniform magnetic
field. The problem is in the context of generalized magneto-thermoelasticity theory with one relaxation time. The
Laplace transform with respect to time is used. A numerical method based on a Fourier-series expansion is used
for the inversion process.

Numerical computations for the temperature, displacement and stress distributions as well as for the induced
magnetic and electric fields are carried out and represented graphically.
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1. Introduction

During the second half of the twentieth century, nonisothermal problems in the theory of
elasticity have become increasingly important, This is due mainly to their many applications
in widely diverse fields. The high velocities of modern aircraft give rise to aerodynamic heat-
ing, which produces intense thermal stresses, reducing the strength of the aircraft structure.
In the technology of modern propulsive systems, such as jet and rocket engines, the high
temperatures associated with combustion processes are the origins of severe thermal stresses.
Similar phenomena are encountered in the technologies of space vehicles and missiles, in the
mechanics of large steam turbines, and even in shipbuilding, where, strangely enough, ship
fractures are often attributed to thermal stresses of moderate intensities [1, p. xi].

Biot [2] formulated the theory of coupled thermoelasticity to eliminate the paradox inher-
ent in the classical uncoupled theory that elastic changes have no effect on the temperature.
The heat equations for both theories are of the diffusion type predicting infinite speeds of prop-
agation for heat waves contrary to physical observations. Lord and Shulmann [3] introduced
the theory of generalized thermoelasticity with one relaxation time by postulating a new law
of heat conduction to replace the classical Fourier law. This law contains the heat flux vector
as well as its time derivative. It contains also a new constant that acts as a relaxation time.
The heat equation of this theory is of the wave-type, ensuring finite speeds of propagation
for heat and elastic waves. The remaining governing equations for this theory, namely, the
equations of motion and the constitutive relations remain the same as those for the coupled
and the uncoupled theories. This theory was extended by Dhaliwal and Sherief [4] to general
anisotropic media in the presence of heat sources.
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Figure 1. A hollow thermoelastic cylinder with a magnetic field in direction of the axis.

Increasing attention is being devoted to the interaction between magnetic fields and strain
in a thermoelastic solid due to its many applications in the fields of geophysics, plasma physics
and related topics. In the nuclear field, the extremely high temperatures and temperature gra-
dients, as well as the magnetic fields originating inside nuclear reactors, influence their design
and operations [1, p. xi]. Usually, in these investigations the heat equation under consideration
is taken as the uncoupled or the coupled equation, not the generalized one. This attitude is
justified in many situations, since the solutions obtained from any of these equations differ
little quantitatively. However, when short-time effects are considered, the full generalized
system of equations has to be used or else a great deal of accuracy is lost [3].

A comprehensive review of the earlier contributions to the subject can be found in [5].
Among the authors who considered the generalized magneto-thermoelastic equations are
Nayfeh and Nemat-Nasser [6] who studied the propagation of plane waves in a solid un-
der the influence of an electro-magnetic field. They obtained the governing equations in the
general case and the solution for some particular cases. Choudhuri [7] extended these results
to rotating media. Lately, Sherief [8] solved a problem for a solid cylinder, while Sherief and
Ezzat [9] solved a thermal shock half-space problem using asymptotic expansions.

In this work, the problem of an infinitely long annular cylinder whose inner and outer
surfaces are subjected to known surrounding temperatures and are traction-free is considered
in the presence of an axial uniform magnetic field in the context of generalized magneto-
thermoelasticity theory with one relaxation time. This problem closely models the situation
inside some nuclear reactors which are made of elastic materials in the form of annular cylin-
ders and are exchanging heat with the inner and outer mediums through the surfaces of these
cylinders.
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2. Formulation of the problem

Let (r, ψ, z) be cylindrical polar coordinates with thez-axis coinciding with the axis of an
annular infinitely long elastic circular cylinder of a homogeneous, isotropic material of finite
conductivity whose inner and outer radii arRi, i = 1,2 (see Figure 1). The suffix 1 refers to
the inner surface of the cylinder, while the suffix 2 refers to the outer surface. The surfaces of
the cylinder are taken to be traction-free and are in contact with media of known temperatures
Fi(r, t), i = 1,2. The medium interacts with the surroundings through the heat-transfer coeffi-
cientsLi, i = 1,2. A constant magnetic field of strengthH0 acts in the direction of thez-axis.
Due to the effect of this magnetic field there arises in the medium an induced magnetic field
h and an induced electric fieldE (both assumed to be small). Also, there arises a forceF (the
Lorentz Force). Due to the effect of the force, points of the medium undergo a displacementu
which gives rise to a temperature. The electromagnetic quantities satisfy Maxwell’s equations

curlh = J+ ∂D
∂t
, (1)

curlE = −∂B
∂t
, (2)

div h = 0, div E = 0, (3)

B = µ0(H0+ h), D = ε0E. (4)

whereJ is the electric current density,µ0 andε0 are the magnetic and electric permeabilities,
respectively, andB,D are the magnetic and electric induction vectors, respectively.

The elastic quantities satisfy the equations of motion in vector form

div σ + F = ρ ∂
2u
∂t2

, (5)

whereσ is the stress tensor,F the external body force, which is here equal to the Lorentz force
andρ is the density. The last field equation is the equation of energy balance, namely

∂

∂t
[ρcET + γ T0e] = −div q, (6)

whereq is the heat-flux vector,cE is the specific heat at constant strain,e = div u is the cubical
dilatation,γ is a material constant equal to(3λ+ 2µ)αt , whereλ,µ are Lame’s modulii and
αt is the coefficient of linear thermal expansion.T0 is a reference temperature assumed to be
such that|(T − T0)/T0| � 1.

The above field equations are supplemented by constitutive equations which consist first
of Ohm’s law for moving media [1, p. 726]

J = σ0

[
E+ µ0

∂u
∂t
× (H0+ h)

]
,

whereσ0 is the electric conductivity. We may linearize the above equation by neglecting small
quantities of the second order giving

J = σ0

[
E+ µ0

∂u
∂t
× H0

]
. (7)
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The second constitutive equation is the one for the Lorentz force which is [1, p. 702]

F = J× B. (8)

The third constitutive equation is the Hooke–Duhamel–Neumann law, namely [3]

σij = 2µeij + λeδij − γ (T − T0)δij , (9)

whereδij is Kronecker’s delta tensor andeij is the strain tensor whose components are given
by

eij = 1
2(ui,j + uj,1) (10)

The last constitutive equation is the generalized Fourier law of heat conduction which has the
form

q+ τ0
∂q
∂t
= −k gradT . (11)

Substituting from Equation (9) in Equation (5) and using Equation (10), we arrive at the
equations of motion in vector form

(λ+ µ)∇2u+ µgrad divu− γ gradT + F = ρ ∂
2u
∂t2

. (12)

Applying the div operator to both sides of Equation (12), we obtain

(λ+ 2µ)∇2e − γ∇2T + div F = ρ ∂
2e

∂t2
, (13)

where∇2 is Laplace’s operator in cylindrical coordinates, given by

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ψ2
+ ∂2

∂z2
.

In case of dependence onr only, this reduces to

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
.

Applying the div operator to both sides of Equation (11), then substituting from the resulting
equation in Equation (6) and its time derivative, we obtain the generalized heat equation

k∇2T =
(
∂

∂t
+ τ0

∂2

∂t2

)
(ρcET + γ T0e). (14)

Because of the cylindrical symmetry of the problem, and if there is noz-dependence of the
field variables, all the considered functions will be functions ofr andt only. The components
of the displacement vector will be taken of the form

ur = u, uψ = uz = 0.
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The strain tensor components are thus given by

err = ∂u

∂r
, eψψ = u

r
, ezz = erz = erψ = eψz = 0.

It follows that the cubical dilatatione is of the form

e = ∂u

∂r
+ u
r
= 1

r

∂(ru)

∂r
. (15)

From Equation (9) we obtain the components of the stress tensor as

σrr = 2µ
∂u

∂r
+ λe − γ (T − T0), (16a)

σψψ = 2µ
u

r
+ λe − γ (T − T0), (16b)

σzz = λe − γ (T − T0), (16c)

σrz = σzψ = σψr = 0. (16d)

The induced magnetic fieldh will have one componenth in thez-direction, while the induced
electric fieldE will have one componentE in theψ-direction. From Equation (7), it follows
that the electric current density will have one component only in theψ-direction, given by

J = σ0

[
E − µ0H0

∂u

∂t

]
. (17)

The vector Equations (1) and (2), reduce to the following scalar equations

∂h

∂r
= −

[
J + ε0

∂E

∂t

]
, (18)

1

r

∂(rE)

∂r
= −µ0

∂h

∂t
. (19)

EliminatingJ between Equation (17) and (18), we obtain

∂h

∂r
= σ0µ0H0

∂u

∂t
−
[
σ0E + ε0

∂E

∂t

]
. (20)

EliminatingE between Equations (18) and (19), we obtain[
∇2− µ0σ0

∂

∂t
− µ0ε0

∂2

∂t2

]
h = µ0σ0H0

∂e

∂t
. (21)

The Lorentz force has one componentF in the r-direction obtained from Equations (8) and
(17) as

F = −µ0H0

[
ε0
∂E

∂t
+ ∂h
∂r

]
. (22)
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Substituting from Equation (22) in Equations (13), we obtain upon using Equation (19)

(λ+ 2µ)∇2e − γ∇2T + µ2
0ε0H0

∂2h

∂t2
− µ0H0∇2h = ρ ∂

2e

∂t2
. (23)

We shall use the following nondimensional variables

r ′ = c1ηr, R′i = c1ηRi, u′ = gc1ηu, e′ = ge, σ ′ij =
gσij

µ

t ′ = c2
1ηt, τ ′0 = c2

1ητ0, θ = T − T0

T0
, F ′i =

Fi − T0

T0
,

q ′ = q

kT0c1η
, L′i =

Li

kc1η
, h′ = ηg

σ0µ0H0
h, E′ = ηg

σ0µ
2
0H0c1

E.

whereg = γ

ρcE
, η = ρcE

k
; c1 =

√
λ+2µ
ρ

is the speed of propagation of isothermal elastic waves

andL1, L2 are the coefficients of heat transfer on the inner and outer surfaces of the cylinder,
respectively. In terms of these nondimensional variables, the governing Equations (18), (19),
(21), (23) and (14) reduce to (dropping the primes for convenience)

∂h

∂r
= ∂u

∂t
−
[
νE + V 2∂E

∂t

]
, (24)

1

r

∂(rE)

∂r
= −∂h

∂t
, (25)

[
∇2− ν ∂

∂t
− V 2 ∂

2

∂t2

]
h = ∂e

∂t
, (26)

∇2e − ε1∇2θ − ε2ν

(
∇2− V 2 ∂

2

∂t2

)
h = ∂2e

∂t2
, (27)

∇2θ =
(
∂

∂t
+ τ0

∂2

∂t2

)
(θ + e), (28)

where 1/ν = η/σ0µ0 is a measure of magnetic viscosity,V = c1/c wherec is the speed
of light given by c2 = 1/ε0µ0, ε1 = bg/β2 is the thermoelastic coupling constant where
b = γ T0/µ, β

2 = (λ+ 2µ)/µ andε2 = µ0H
2
0/ρc

2
1 is the magnetoelastic coupling constant.

We note that Equation (15) retains its form.
The nondimensional constitutive equations take the form

σrr = β2e − 2u

r
− ε1β

2θ, (29a)

σψψ = β2e − 2
∂u

∂r
− ε1β

2θ, (29b)

σzz = (β2 − 2)e − ε1β
2θ, (29c)
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σrz = σzψ = σψr = 0. (29d)

The initial conditions of the problem are taken to be homogeneous, while the boundary
conditions are taken as follows:

(1) The transverse components of the vectorE are continuous across the surface of the
cylinder, this gives

E(Rj, t) = Ej(Rj , t), t > 0, j = 1,2, (30)

whereE1 andE2 are the components of the electric field intensities in theψ-direction in free
space inside and outside the cylinder, respectively.

(2) The transverse components of the vectorh are continuous across the surface of the
cylinder, this gives

h(Rj, t) = hj(Rj , t), t > 0, j = 1,2, (31)

whereh1 andh2 are the components of the induced magnetic field in thez-direction in free
space inside and outside the cylinder, respectively.

(3) The surfaces of the cylinder are traction-free,i.e.

σrr(Rj , t) = 0, t > 0, j = 1,2. (32)

(4) The heat-conduction boundary condition

qr(R1, t) = L1(F1− θ), (33a)

qr(R2, t) = L2(θ − F2). (33b)

In order to utilize Equations (30) and (31) above, we must obtain the induced fieldsEj, hj in
the free space surrounding the medium. These quantities satisfy the following nondimensional
equations

∂hj

∂r
= −V 2∂E

j

∂t
, j = 1,2, (34)

1

r

∂(rEj )

∂r
= −∂h

j

∂t
, j = 1,2. (35)

3. Solution in the Laplace-transform domain

Taking the Laplace transform with parameters (denoted by a bar) of both sides of Equations
(24)–(35), we obtain the following set of equations

∂h̄

∂r
= sū− (ν + V 2s)Ē, (36)

1

r

∂(rĒ)

∂r
= −sh̄, (37)

168557.tex; 6/08/1998; 14:00; p.7



394 Hany H. Sherief and Magdy A. Ezzat

[∇2− νs − V 2s2]h̄ = sē, (38)

(∇2− s2)ē = ε1∇2θ̄ + ε2ν(∇2− V 2s2)h̄, (39)

∇2θ̄ = (s + τ0s
2)(θ̄ + ē). (40)

The nondimensional constitutive Equations (29) in the Laplace transform domain take the
form

σ̄rr = β2ē − 2ū

r
− bθ̄, (41a)

σ̄ψψ = β2ē − 2
∂ū

∂r
− bθ̄, (41b)

σ̄zz = (β2 − 2)ē − bθ̄, (41c)

The boundary conditions in the Laplace transform domain become

Ē(Rj , s) = Ēj (Rj , s), j = 1,2. (42)

h̄(Rj, t) = h̄j (Rj , t), j = 1,2. (43)

σ̄rr = 0, j = 1,2. (44)

q̄r (R1, s) = L1(F̄1 − θ̄ ). (45a)

q̄r (R2, s) = L2(θ̄ − F̄2). (45b)

Equations (34) and (35) take the following form in the Laplace-transform domain

∂h̄j

∂r
= −V 2sĒj , j = 1,2, (46)

1

r

∂(rĒj )

∂r
= −sh̄j , j = 1,2. (47)

Eliminatingh̄ andθ̄ between Equations (38)–(40), we get the following sixth-order differential
equation satisfied bȳe

(∇6−A∇4+ B∇2 − C)ē = 0, (48)

where

A = s[ε1(sτ0 + 1)+ ε2ν + ν + s(τ0 + V 2+ 1)+ 1],
B = s2{ε1(sτ0 + 1)(ν + sV 2)+ ε2ν(s(τ0 + V 2)+ 1)

+ν(s(τ0 + 1)+ 1)+ s(s(τ0(V
2+ 1)+ V 2)+ V 2+ 1)},

C = s4(sτ0 + 1)(ε2νV
2+ ν + sV 2).
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It should be noted that the above equations reduce to the usual equations of generalized ther-
moelasticity without electro-magnetic effects in the limit asν, V andε2 → 0. Equation (48)
can be factorized as

(∇2− k2
1)(∇2− k2

2)(∇2− k2
3)ē = 0, (49)

wherek2
1, k

2
2 andk2

3 are the roots of the characteristic equation

k6−Ak4+ Bk2− C = 0.

These roots are given by

k2
1 = 1

3[A+ 2P sinQ],

k2
2 = 1

3[A− P sinQ−√3P cosQ],

k2
3 = 1

3[A− P sinQ+√3P cosQ],
where

P =
√
A2− 3B, R = 9AB − 2A3 − 27C

2P 3
, Q = 1

3 sin−1(R).

It is worth noting here that all the above quantities including the rootskI , being functions
of the parameters of the Laplace transform, are complex in general.

The solution of Equation (49) can be written as the sum

ē =
3∑
i=1

ēi ,

whereēi is the solution of the equation

(∇2− k2
i )ēi = 0. i = 1,2,3.

Thus, the general solution of Equation (49) has the form

ē =
3∑
i=1

(AiI0(kir)+ BiK0(kir)), (50)

whereAi andBi are parameters depending ons only, i = 1,2,3 andI0 andK0 are the
modified Bessel functions of order zero of the first and second kinds, respectively.

Eliminating h̄, ē and thenθ̄ , ē between Equations (38–40), we find thatθ̄ andh̄ satisfy the
same equation as̄e, i.e.

(∇6−A∇4+ B∇2 − C)θ̄ = (∇6−A∇4 + B∇2− C)h̄ = 0

θ̄ andh̄ are thus given by

θ̄ =
3∑
i=1

(A′iI0(kir)+ B ′iK0(kir)), (51)
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h̄ =
3∑
i=1

(A′′i I0(kir)+ B ′′i K0(kir)), (52)

whereA′i , B
′
i , A
′′
i andB ′′i are parameters depending ons only. The compatibility between

Equations (50–52) and Equations (38) and (40) gives

A′i =
s(1+ τos)

k2
i − s(1+ τ0s)

Ai, B ′i =
s(1+ τ0s)

k2
i − s(1+ τ0s)

Bi, (53)

A′′i =
s

k2
i − νs − V 2s2

Ai, B ′′i =
s

k2
i − νs − V 2s2

Bi. (54)

Substituting from Equations (53) and (54) in Equations (51) and (52), we obtain

θ̄ = s(1+ τ0s)

3∑
i=1

(AiI0(kir)+ BiK0(kir))

k2
i − s(1+ τ0s)

, (55)

h̄ = s
3∑
i=1

(AiI0(kir)+ BiK0(kir))

k2
i − νs − V 2s2

. (56)

Substituting from Equation (50) in the Laplace transform of Equation (15) and integrating
both sides with respect tor, we obtain

ū =
3∑
i=1

1

ki
(AiI1(kir)− BiK1(kir)). (57)

In obtaining Equation (57), we have used the following relations of the Bessel functions [10,
p. 142]∫

zI0(z)dz = zI1(z),

∫
zK0(z)dz = −zK1(z).

Substituting from Equations (56) and (57) in Equation (36), and using the relations [10, p. 138]

I ′0(z) = I1(z), K ′0(z) = −K1(z),

we obtain

Ē = −s2
3∑
i=1

(AiI1(kir)− BiK1(kir))

ki(k
2
i − νs − V 2s2)

. (58)

It should be noted here that the solutions (56) and (58) satisfy Equation (37) identically.
Substituting from Equations (50), (55) and (57) in Equation (41a), we obtain

σ̄rr =
3∑
i=1

{
β2

[
1− ε1s(1+ τ0s)

k2
i − s(1+ τ0s)

]
(AiI0(kir)+ BiK0(kir))

− 2

rki
(AiI1(kir)− BiK1(kir))

}
, (59)
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Differentiating both sides of Equation (57) with respect tor and using the relations [10, p. 139]

dI1(z)

dz
= I0(z)− 1

z
I1(z),

dK1(z)

dz
= −K0(z)− 1

z
K1(z),

we obtain

∂ū

∂r
=

3∑
i=1

[
Ai

(
I0(kir)− 1

kir
I1(kir)

)
− Bi

(
K0(kir)+ 1

kir
K1(kir)

)]
. (60)

Substituting from Equations (50), (55) and (60) in Equation (41b), we obtain

σ̄ψψ =
3∑
i=1

Ai

{[
β2− 2− ε1β

2s(1+ τ0s)

k2
i − s(1+ τ0s)

]
I0(kir)+ 2

kir
I1(kir)

}

+
3∑
i=1

Bi

{[
β2 + 2− ε1β

2s(1+ τ0s)

k2
i − s(1+ τ0s)

]
K0(kir)+ 2

kir
K1(kir)

}
(61)

In order to obtain the induced field in free space, we eliminateĒj between Equations (46) and
(47), to obtain

(∇2− V 2s2)h̄j = 0, j = 1,2, (62)

whereh̄1 and h̄2 are the solutions of Equation (62) which are bounded at the origin and at
infinity, respectively. Thus, we have

h̄1 = A0I0(V sr), (63)

h̄2 = B0K0(V sr), (64)

whereA0 andB0 are some parameters depending ons only.
Substituting from Equations (63) and (64) in Equation (46), we obtain

Ē1 = −A0

V
I1(V sr), (65)

Ē2 = B0

V
K1(V sr). (66)

We shall now use the boundary conditions of the problem to evaluate the unknown parameters
of the problem, namelyAi andBi, i = 0,1,2,3. Equations (30) and (31) in the Laplace-
transform domain together with Equations (56), (58), (63), (64), (65) and (66) immediately
give

s2
3∑
i=1

(AiI1(kiR1)− BiK1(kiR1))

ki(k
2
i − νs − V 2s2)

− A0

V
I1(V sR1) = 0, (67)

s2
3∑
i=1

(AiI1(kiR2)− BiK1(kiR2))

ki(k
2
i − νs − V 2s2)

− B0

V
K1(V sR2) = 0, (68)
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s

3∑
i=1

(AiI0(kiR1)+ BiK0(kiR1))

k2
i − νs − V 2s2

−A0I0(V sR1) = 0, (69)

s

3∑
i=1

(AiI0(kiR2)+ BiK0(kiR2))

k2
i − νs − V 2s2

− B0K0(V sR2) = 0. (70)

Equations (32) and (59) give

3∑
i=1

{
β2

[
1− ε1s(1+ τ0s)

k2
i − s(1+ τ0s)

]
(AiI0(kiR1)+ BiK0(kiR1))

− 2

R1ki
(AiI1(kiR1)− BiK1(kiR1))

}
= 0, (71)

3∑
i=1

{
β2

[
1− ε1s(1+ τ0s)

k2
i − s(1+ τ0s)

]
(AiI0(kiR2)+ BiK0(kiR2))

− 2

R2ki
(AiI1(kiR2)− BiK1(kiR2))

}
= 0, (72)

In order to use the boundary conditions (33), we shall use the generalized Fourier law of heat
conduction (Equation (11)) in nondimensional form, namely

qr + τ0
∂qr

∂t
= −∂θ

∂r
.

Taking the Laplace transform of the above equation, we obtain

q̄r = − 1

1+ τ0s

∂θ̄

∂r
. (73)

Using Equation (73), we may write Equations (33) as

∂θ̄

∂r
− L1(1+ τ0s)θ̄ = −L1(1+ τ0s)F̄1, at r = R1, (74)

∂θ̄

∂r
+ L2(1+ τ0s)θ̄ = L1(1+ τ0s)F̄2, at r = R2, (75)

Using Equations (74) and (75) together with Equation (55), we obtain

s

3∑
i=1

Ai[kiI1(kiR1)− L1(1+ τ0s)I0(kiR1)]

−Bi[kiK1(kiR1)+ L1(1+ τ0s)K0(kiR1)]
k2
i − s(1+ τ0s)

= −L1F̄1,

(76)
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s

3∑
i=1

Ai[kiI1(kiR2)+ L1(1+ τ0s)I0(kiR2)]

−Bi[kiK1(kiR2)− L1(1+ τ0s)K0(kiR2)]
k2
i − s(1+ τ0s)

= L2F̄2,

(77)

Equations (67–72), (76) and (77) constitute a system of eight linear equations in the eight
unknown parametersAi,Bi, i = 0,1,2,3. Whose solution completes the solution of the
problem in the Laplace transform domain. During the numerical inversion of the Laplace
transform, these equations are solved numerically.

4. Inversion of the Laplace transfrom

We shall now outline the numerical inversion method used to find the solution in the physical
domain. This numerical technique has the advantage that it is easy to implement (relatively
speaking), gives good results, and converges quickly. Letf̄ (r, s) be the Laplace transform of
a functionf (r, t). The inversion formula for Laplace transforms can be written as

f (r, t) = 1

2πi

∫ d+i∞

d−i∞
est f̄ (r, s)ds

whered is an arbitrary real number greater than all the real parts of the singularities off̄ (r, s).
Takings = d + iy, we see that the above integral takes the form

f (r, t) = edt

2π

∫ ∞
−∞

eity f̄ (r, d + iy)dy.

Expanding the functionh(r, t) = exp(−dt)f (r, t) in a Fourier series in the interval[0,2T ],
we obtain the approximate formula [11]

f (r, t) = f∞(r, t)+ ED,
where

f∞(r, t) = 1
2c0(r, t) +

∞∑
k=1

ck(r, t) for 06 t 6 2T, (78)

and

ck(r, t) = edt

T
Re[eikπt/T f̄ (r, d + ikπ/T )], k = 0,1,2, (79)

whereED, the discretization error, can be made arbitrarily small ifd is taken large enough
[11].

Since the infinite series in Equation (78) can only be summed up to a finite number ofN

terms, the approximate value off (r, t) becomes

fN(r, t) = 1
2c0(r, t)+

N∑
k=1

ck(r, t) for 06 t 6 2T . (80)
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Using the above formula to evaluatef (r, t), we introduce a truncation errorET that must be
added to the discretization error to produce the total approximation error.

Two methods are used to reduce the total error. First, the ‘Korrecktur’ method [11] is used
to reduce the discretization error. Next, theε-algorithm is used to reduce the truncation error
and hence to accelerate convergence.

The Korrecktur method uses the following formula to evaluate the functionf (r, t)

f (r, t) = f∞(r, t)− e2 dT f∞(r,2T + t)+ E′D,
where the discretization error|E′D| � |ED| [11]. Thus, the approximate value off (r, t)
becomes

fNK(r, t) = fN(r, t) − e−2 dT fN ′(r,2T + t), (81)

whereN ′ is an integer such thatN ′ < N .
We shall now decribe theε-algorithm that is used to accelerate the convergence of the

series in Equation (80). LetN be an odd natural number, and let

sm(r, t) =
m∑
k=1

ck(r, t)

be the sequence of partial sums of (80). We define theε-sequence by

ε0,m = 0, ε1,m = sm
and

εp+1,m = εp−1,m+1+ 1/(εp,m+1 − εp,m), p = 1,2,3, . . . .

It can be shown that [11] the sequence

ε1,1, ε3,1, ε5,1, . . . , εN,1

converges tof (r, t)+ ED − c0/2 faster than the sequence of partial sums

sm, m = 1,2,3, . . . .

The actual procedure used to invert the Laplace transforms consists of using Equation (81)
together with theε-algorithm. The values ofd andT are chosen according to the criteria
outlined in [11].

Figure 2. Temperature distribution. Figure 3. Displacement distribution.
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Table 1. Values of the constants

k = 386 αt = 1·78(10)−5 cE = 383·1 η = 8886·73

µ = 3·86(10)10 λ = 7·76(10)10 ρ = 8954 c1 = 4·158(10)3

β2 = 4 µ0 = 4π(10)−7 ε0 = (10)−9/(36π) σ0 = 5·7(10)7

V = 1·39(10)−5 T0 = 293 b = 0·042 g = 1·61

ε1 = 0·0168 ε2 = 0·0008 ν = 0·008 τ0 = 0·02

R1 = 1 R2 = 2 L1 = L2 = 2 H0 = 1

Figure 4. Radial stress distribution. Figure 5. Transverse stress distribution.

Figure 6. Induced magnetic field distribution. Figure 7. Induced elctric field distribution.

5. Numerical results

The copper material was chosen for purposes of numerical evaluations. The constants of the
problem are shown in Table 1

The normalized temperatures of the inner and outer surroundings were taken, respec-
tively, as

F1(t) = 1·5+ 0·5 cos(13t), F2(t) = 1.

The computations were performed for three values of nondimensional time, namelyt =
0·06, t = 0·12 andt = 0·36. The numerical technique outlined above was used to obtain
the temperature, displacement, radial stress and transverse stress distributions, as well as the
induced magnetic and electric field distributions. In all figures, solid line represent the function
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whent = 0·06, the dashed lines represent it whent = 0·12, while dotted lines represent the
function whent = 0·36. The normalized temperature incrementθ is represented by the graph
in Figure 2. The displacementu is shown in Figure 3. The stress componentsσrr andσψψ are
shown in Figures 4 and 5, respectively while the induced fieldsh andE are shown in Figures 6
and 7, respectively.

The phenomenon of finite speeds of propagation is manifested in all these figures. For the
smallest values of time considered we see that the heat effects of the surrounding media are
localized in a region adjacent to the walls. This region expands with the passage of time to fill
the whole cylinder for the largest value of time. This region corresponds to the propagation of
wave fronts from the surfaces of the cylinder. This is not the case when the coupled equation
of heat conduction is used. In [12] a similar problem was treated in the context of the coupled
theory of thermoelasticity. It is seen there that the thermal effects extends to the whole cylinder
immediately.
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